Distinct roles of calcineurin-nuclear factor of activated T-cells and protein kinase A-cAMP response element-binding protein signaling in presynaptic differentiation.

نویسندگان

  • Tomoyuki Yoshida
  • Masayoshi Mishina
چکیده

Synaptic vesicle accumulation and morphological changes are characteristic features of axon terminal differentiation during synaptogenesis. To investigate the regulatory mechanism that orchestrates synaptic molecules to form mature presynaptic terminals, we visualized a single axon terminal of zebrafish olfactory sensory neurons in vivo and examined the effects of the neuron-specific gene manipulations on the axon terminal differentiation. Synaptic vesicles visualized with vesicle-associated membrane protein 2 (VAMP2)-enhanced green fluorescent protein (EGFP) fusion protein gradually accumulated in axon terminals, whereas the axon terminals visualized with GAP43 fused with EGFP remodeled from complex shapes with filopodia to simple shapes without filopodia from 50 h postfertilization (hpf) to 84 hpf. Expression of dominant-negative protein kinase A (PKA) or cAMP response element-binding protein (CREB) suppressed the VAMP2-EGFP punctum formation in axon terminals during synaptogenesis. Consistently, constitutively active PKA or CREB stimulated VAMP2-EGFP puncta formation. On the other hand, cyclosporine A treatment or suppression of nuclear factor of activated T cells (NFAT) activation prevented the axon terminal remodeling from complex to simple shapes during synaptogenesis. Consistently, expression of constitutively active calcineurin accelerated the axon terminal remodeling. These results suggest that calcineurin-NFAT signaling regulates axon terminal remodeling, and PKA-CREB signaling controls synaptic vesicle accumulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells

Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

بررسی اثر افزایش cAMP بر فسفوریلاسیون پروتئین BAD در رده‌ی سلولی لوسمی لنفوبلاستیک حاد پیش سازB- (NALM-6) تیمارشده با دوکسوروبیسین

Kashiri M1, Safa M2, Kazemi A3 1Dept. of Hematology, Allied Medical School, Tehran University of Medical Sciences, Tehran, Iran 2Cellular and Molecular Research Center, Dept. of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran 3Dept. of Hematology & Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, I...

متن کامل

I-34: Steroid Hormone Signalling at the FetomaternalInterface

Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...

متن کامل

Tusc2/Fus1 regulates osteoclast differentiation through NF-κB and NFATc1

Tumor suppressor candidate 2 (Tusc2, also known as Fus1) regulates calcium signaling, and Ca2+-dependent nuclear factor of activated T-cells (NFAT) and nuclear factor kappa B (NF-κB) pathways, which play roles in osteoclast differentiation. However, the role of Tusc2 in osteoclasts remains unknown. Here, we report that Tusc2 positively regulates the differentiation of osteoclasts. Overexpressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 12  شماره 

صفحات  -

تاریخ انتشار 2005